The IETF Network

... an overview

IETF Meeting Router Statistics

To view these stats go to http://dashboard.meeting.ietf.org

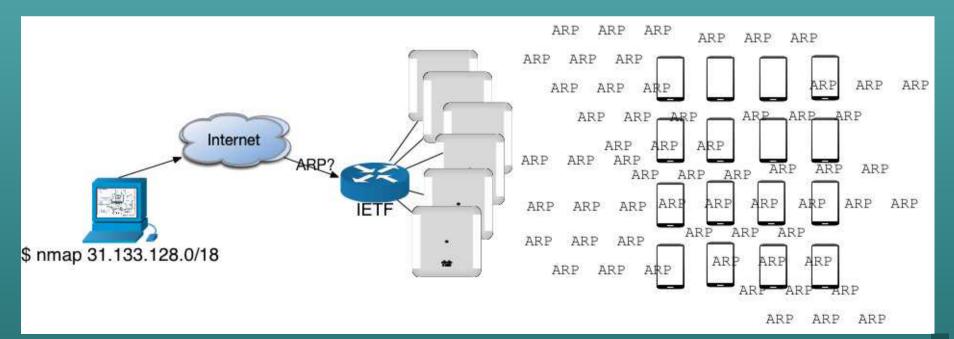
The Scout™

- A Ubiquiti router
- Shipped to site / installed during site visit
- Starts announcing our address space
 - Allows testing of the circuits
 - Validation of the BGP peering, etc.
 - Provides an anchor for geo-location data
 - Gets the ietf-hotel SSID up for NOC

Circuits

- At least 2, but up to 5 circuits
- Almost always donated by local providers
 - Try for redundant:
 - providers
 - fiber
 - entrances
- 1Gbps -> 10Gbps
- Dual stack (IPv4 / IPv6)
- BGP

Routers


- 2 Juniper routers
 - Were MX80s, upgraded to MX204s (this meeting)
 - Convergence: ~25 minutes -> ~1.5 minutes
- Core routers for network
 - BGP (eBGP, iBGP)
 - RPKI
 - OSPF / OSPFv3
 - DHCP relay / RA
 - BCP38
 - Passive ARP learning (more if we have time...)

ARP ARP ARP... ARP ARP...

ARP ARP ARP... ARP ARP...

```
aggregate {
   inactive: route 130.129.0.0/16;
   route 31.133.128.0/18;
   route 31.130.224.0/20;
}
```


RPKI

```
routing-options {
   validation {
        group rpki-servers {
            session 31.130.229.4 { # Dragon Research Labs RPKI Toolkit
                preference 100;
                port 323;
policy-statement RPKI {
        term whitelist {...}
        term invalid {
            from {
                protocol bgp;
                validation-database invalid;
            then {
                validation-state invalid;
                community add RPKI Invalid;
                reject;
```

```
policy-statement RPKI {
    term whitelist {
        from {
            protocol bgp;
            prefix-list RPKI Whitelist;
        then {
            validation-state valid;
            community add RPKI Whitelist;
            next policy;
    term invalid {
        from {
            protocol bgp;
            validation-database invalid;
        then {
            validation-state invalid;
            community add RPKI Invalid;
            reject;
    term valid {
        from {
            protocol bgp;
            validation-database valid;
        then {
            validation-state valid;
            community add RPKI Valid;
            next policy;
```

```
term unknown {
            from {
                protocol bgp;
                validation-database unknown;
            then {
                validation-state unknown;
                community add RPKI Unknown;
                next policy;
       /* This should not happen -- things should be valid,
invalid or unknown */
       term failed {
            from protocol bgp;
            then {
                community add RPKI Failure;
               next policy;
```

Switches

- 2 x Cisco Catalyst 4500X Core stacked
- 10 x Cisco IDF switches
- 40 x Cisco 12 port switches
- "Joe's magic..."
 - Y'all keep plugging in DHCP servers :-(
 - A new switch to a fully provisioned switch in ~15 minutes (including a software upgrade).
 - Rooms are dynamic this means we need to reconfigure things often and quickly

Switch Automation

- Feature-wise, the switch automation includes:
 - Initialize new switch with desired config and software image
 - Validation of config and image (checksum)
 - Auto-generation of SSH host key
 - Call-home for when a switch should re-ZTP
 - Auto-detection of connected device type (switch, AP, probe)
 - Port auto-config and auto-doc update
 - Detection of lost device and port description update

NEW: Device sw-122 made a request to bootstrap

Serial Number Platform ID

FOC2129Y3X5 WS-C3560CX-12PD-S

Current Version Current Image File

15.2(6)E2 c3560cx-universalk9-mz.152-6.E2.bin

DHCP IP Address

31.130.224.239

NEW: Device sw-123 made a request to bootstrap

Serial Number Platform ID

FOC2129Y3X4 WS-C3560CX-12PD-S

Current Version Current Image File

15.2(6)E2 c3560cx-universalk9-mz.152-6.E2.bin

DHCP IP Address

31.130.224.240

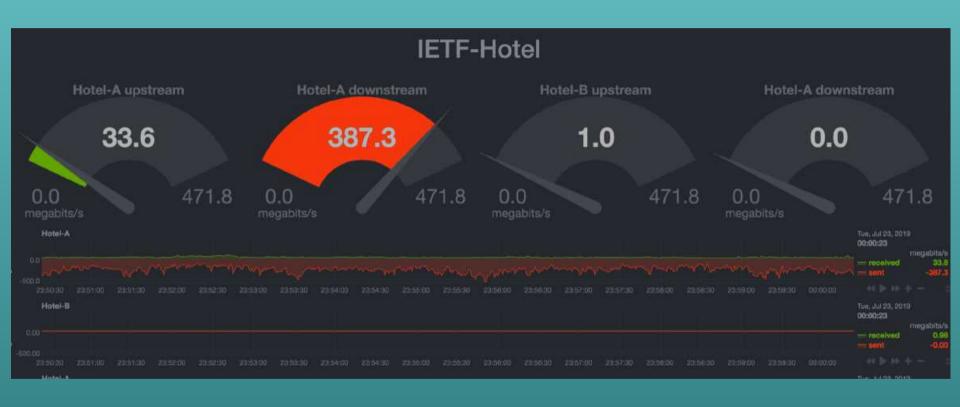
ztp APP 1:55 PM

Serial Number FOC2129Y3X8

VERIFY SUCCESS: Device sw-121 has been successfully bootstrapped

Serial Number

FOC2129Y3X6


IETF Switch Registration Tool: Physical Switches

Reset Submit											
Row No. *	Delete?	Assigned?	Re-ZTP?	Serial Number	Product ID	Max Ports	Assigned Log Switch	gical	Provision Status	Reachability 0	
1.	8	•		FCW2132C063	WS-C3850-24U-L	24	sw-101	0 oto 0			
2.	0		0	FCW2132C08E	WS-C3850-24U-L	24	sw-102	1 4 D			
3,	O		D	FCW2132C08H	WS-C3850-24U-L	24	sw-103	(ap) 0			
4.		Ø	0	FCW2132C08N	WS-C3850-24U-L	24	sw-104	O dip C			
5.		2	D	FCW2132D02S	WS-C3850-24U-L	24	sw-105	○			
6.	0	0	0	FCW2132D07Y	WS-C3850-24U-L	24	sw-106	50 00 C			
7.	Ö		0	FOC2129Y3VL	WS-C3560CX-12PD-5	12	sw-111	Q\$ 0			
8.	0	0	0	FOCZ129Y3VN	WS-C3560CX-12PD-S	12	sw-112	□ 05 0			
9.		0	0	FOC2129Y3WL	WS-C3560CX-12PD-S	12	sw-113	g op o			
10.	0	0	D	FOC2129Y3WP	WS-C3560CX-12PD-S	12	sw-114	Ø 45 0			
11.	0	Ø	0	FOC2129Y3WZ	WS-C3560CX-12PD-S	12	sw-115	0 42 C			
12.		2		FOC2129Y3X1	WS-C3560CX-12PD-S	12	sw-125	D 000 C			
13.		9	B .	FOC2129Y3X2	WS-C3560CX-12PD-5	12	sw-124	ate d			

Wireless

- 2 x Cisco WLC 5520 in an HA pair
 - Cisco WLC 2504 for ISOC & testing
- Somewhere between 50 and 70 Access Points
 - [TODO] 55 this time
 - We do both 5Ghz and 2.4Ghz, prefer 5Ghz
- This has largely solved much of the ARP problem
 - Does your phone battery now last >3/4 day?
 - Thank Panda...!
- Multiple encrypted SSIDs
 - "ietf-legacy, ietf, ietf-2.4only, ietf-nat64, ietf-v6only, ietf-nat64-unencrypted, eduroam, isoc, ..."

Guestroom / "hotel"

Guestroom Network

IETF participants are "weird"...
... no, really weird...

- Guest networks are built for *normal* people
 - Captive portal
 - Intercept / rewrite DNS
 - HTTP munging...
 - NAT
 - Drop no-good, bad, dangerous ports (like 22!)
 - Assumptions:
 - Limited devices
 - Limited bandwidth
 - Limited sessions
- IPv6? Ain't nobody got time for that...

From recent stay

```
wkumari$ git push
ssh: connect to host
git.kumari.net port 22:
Connection refused
fatal: Could not read from remote
repository.
```

Please make sure you have the correct access rights and the repository exists.

wkumari\$

Guestroom network

- Bypass guestroom gateway with Ubiquiti routers, open SSID
 - "Free Internets for all!"
- Some hotels have truly bizarre inventive architectures...
 - Really bad channelizing
 - Mac Mini in "Internet Sharing Mode"
 - Access Points on elevators... much hilarity...
- Too few access points in guest rooms (getting better)
- Ethernet over Coax / DOCSIS / DSL / Cat3
- Integrated PoS, TV, mini-bar, signs, thermostats, ...

Servers / Services

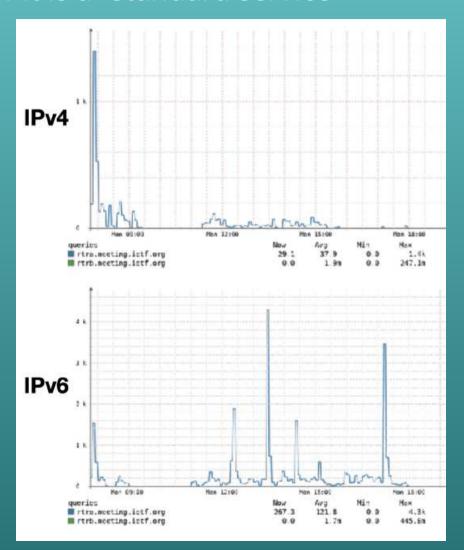
- 3+3 Physical servers
- Ganeti, Docker
- DNS / DNSSEC, DPRIVE
- DNS64
- DHCP / DHCPv6
- NTP
- Tickets
- RPKI server
- TACACS+ / RADIUS
- ZTP server
- Etherpad
- Ansible for automation (Yay! DevOps!)
- SMTP

- Git repo
- VMs for Meetecho
- Backups
- Syslog
- Monitoring:
 - Prometheus
 - Deadman
 - Intermapper
 - Smokeping
 - Rancid
 - Netdisco
 - Observium, ...

Scrubbing PII....

Remote Participation

- Live streaming gets their own VLANs
- ... and VMs
- ~60 Mbps BW from VMs to Internet
- The network we build makes remote participation possible
- Meetecho / Kaskadian have done events on venue networks
 - but only streaming (not remote participants)
 - Meetecho remote participation depends on "but the limited bandwidth, NATs, firewalls, lack of IPv6, would likely prevent us from providing good remote participation."
 - Kaskadian: "Hotel network won't work!....:-P"



You deserve a kitten now...

Experiments...

DPRIVE

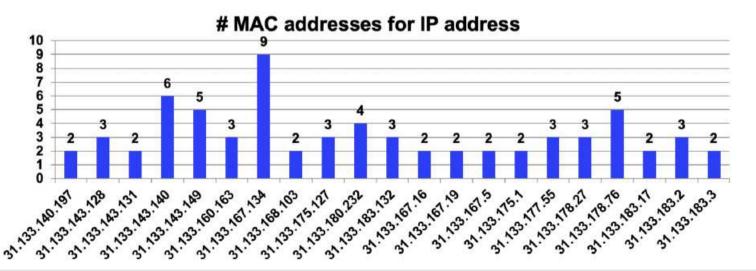
- Ran one of the early DNS-over-TLS services
- Now it is a "standard service"

V60NLY - no, really.

- Turned off IPv4 on all radios near V6OPS, 6MAN
 - Hilarity ensues...:-P

NAT64 Testing

	Meetecho	Jabber	Etherpad	Skype	Signal	Spotify	Outlook	Dropbox	Air Display
MacOS		Adium							
iOS							ТВТ	ТВТ	
Android									
Windows		ТВТ		ТВТ	ТВТ		ТВТ		
Web based									


Ref: https://datatracker.ietf.org/meeting/100/materials/slides-100-v6ops-sessa-readout-from-ietf100-hackathon-01

MAC Randomization

DHCP Logs

- ◆ 144 local MACs seen during the week (IETF92)
- 97 IP addresses were assigned to local MAC addresses. Out of them:
 - 76 IP addresses were assigned to one local MAC address, e.g., because no DHCP client identifier was used by the client
 - 21 IP addresses were assigned to multiple local MAC address

Questions?

